
Nikolay Sakharnykh,

Developer Technology Engineer

GPGPU AND ACCELERATOR
ARCHITECTURE TRENDS

2

GPU Architecture & Best Practices

3

WHAT IS HETEROGENEOUS COMPUTING?
Application Execution

+

GPU CPU

High Data Parallelism
High Serial

Performance

4

GPU ARCHITECTURE

GPU L2

GPU DRAM

SM-0 SM-1 SM-N

SYSTEM
MEMORY

5

SM
SM

SM

GPU SM ARCHITECTURE

Functional Units = CUDA cores

192 SP FP operations/clock

64 DP FP operations/clock

Register file (256KB)

Shared memory (16-48KB)

L1 cache (16-48KB)

Read-only cache (48KB)

Constant cache (8KB)

Kepler SM

SM

Register
File

L1 Cache

Shared
Memory

Read-only
Cache

Constant
Cache

Functional
Units

Shared
Memory

6

SIMT EXECUTION MODEL

Thread: sequential execution unit

All threads execute same sequential program

Threads execute in parallel

Thread Block: a group of threads

Threads within a block can cooperate

Light-weight synchronization

Data exchange

Grid: a collection of thread blocks

Thread blocks do not synchronize with each other

Communication between blocks is expensive

Thread

Thread Block

Grid

7

SIMT EXECUTION MODEL
Software Hardware

Threads are executed by CUDA Cores

Thread

CUDA
Core

Thread Block Multiprocessor

Thread blocks are executed on multiprocessors

Thread blocks do not migrate

Several concurrent thread blocks can reside on one
multiprocessor - limited by multiprocessor
resources (shared memory and register file)

Grid

A kernel is launched as a grid of thread blocks

Device

8

SIMT EXECUTION MODEL

Threads are organized into groups of 32 threads called “warps”

All threads within a warp execute the same instruction simultaneously

9

LOW LATENCY OR HIGH THROUGHPUT?

CPU architecture must minimize latency within each thread

GPU architecture hides latency with computation from other threads

GPU Stream Multiprocessor – High Throughput Processor

CPU core – Low Latency Processor Computation Thread/Warp

Tn

Processing

Waiting for data

Ready to be processed

Context switch W1

W2

W3

W4

T1

T2

T3

T4

10

ACCELERATOR FUNDAMENTALS

We must expose enough parallelism to saturate the device

Accelerator threads are slower than CPU threads

Accelerators have orders of magnitude more threads

t0 t1 t2 t3

t4 t5 t6 t7

t8 t9 t10 t11

t12 t13 t14 t15

t0 t0 t0 t0

t1 t1 t1 t1

t2 t2 t2 t2

t3 t3 t3 t3

Fine-grained parallelism is good Coarse-grained parallelism is bad

11

BEST PRACTICES

Minimize data transfers between CPU and GPU

Optimize Data Locality: GPU

System

Memory
GPU Memory

12

BEST PRACTICES

Minimize redundant accesses to L2 and DRAM

Store intermediate results in registers instead of global memory

Use shared memory for data frequently used within a thread block

Use const __restrict__ to take advantage of read-only cache

Optimize Data Locality: SM

SM

L2
Cache

GPU
DRAM

13

BEST PRACTICES

If multiple addresses from a warp lie within the same cache line,
that line is moved only once

Best case: all addresses lie in a single L1 cache line (128B)

Worst case: 32 separate L1 transactions (31 replays)

Coalesce Memory Requests

0 1 31

0 1 31 more memory traffic
more issued instructions

14

BEST PRACTICES
Avoid Warp Divergence

if(threadIdx.x < 12) {

}
else {

}

Instructions are issued per warp

Different execution paths within a warp
are serialized

Different warps can execute different
code with no impact on performance

Avoid branching on thread index

15

BEST PRACTICES

Expose enough parallelism

Optimize data locality

Minimize transfers between CPU and GPU

Minimize redundant accesses to GPU DRAM

Avoid memory divergence

Ensure global accesses are coalesced

Avoid warp divergence

Ensure threads in a warp execute the same path

Quick Summary

16

Programming GPUs

17

3 WAYS TO ACCELERATE APPLICATIONS

Applications

Libraries

Easy to use
Most Performance

Programming
Languages

Most Performance
Most Flexibility

Easy to use
Portable code

Compiler
Directives

18

SIMPLICITY & PERFORMANCE

Accelerated Libraries

Little or no code change for standard libraries, high performance

Limited by what libraries are available

Compiler Directives

Based on existing programming languages, so they are simple and familiar

Performance may not be optimal, directives often do not expose low level architectural details

Parallel Programming languages

Expose low-level details for maximum performance

Often more difficult to learn and more time consuming to implement

19

3 WAYS TO ACCELERATE APPLICATIONS

Applications

Libraries

Easy to use
Most Performance

Programming
Languages

Most Performance
Most Flexibility

Easy to use
Portable code

Compiler
Directives

20

NVIDIA DEVELOPER LIBRARIES

cuBLAS
cuBLAS-XT

NVBLAS
cuFFT

cuFFT-XT

cuSPARSE
cuSOLVER

AMGX

https://developer.nvidia.com/gpu-accelerated-libraries

cuDNN

cuRAND NPP THRUST NVENC NVBIO

https://developer.nvidia.com/gpu-accelerated-libraries
https://developer.nvidia.com/gpu-accelerated-libraries
https://developer.nvidia.com/gpu-accelerated-libraries
https://developer.nvidia.com/gpu-accelerated-libraries
https://developer.nvidia.com/gpu-accelerated-libraries
https://developer.nvidia.com/gpu-accelerated-libraries

21

BLAS LIBRARIES

Step 1: Substitute library calls with equivalent CUDA library calls

 saxpy (…) cublasSaxpy (…)

Step 2*: Manage data locality if necessary

 - with CUDA: cudaMalloc(), cudaMemcpy(), etc.
 - with CUBLAS: cublasAlloc(), cublasSetVector(), etc.

Step 3: Rebuild and link the CUDA-accelerated library

 nvcc myobj.o –l cublas

CUBLAS

https://developer.nvidia.com/cuBLAS

https://developer.nvidia.com/cuBLAS
https://developer.nvidia.com/cuBLAS

22

BLAS LIBRARIES

Drop-in replacement for level 3 BLAS routines (i.e. GEMM)

Automatically uses all available GPUs in the system

No need to modify or even recompile your application

LD_PRELOAD=<path to libnvblas.so> <application>

NVBLAS

http://docs.nvidia.com/cuda/nvblas

http://docs.nvidia.com/cuda/nvblas
http://docs.nvidia.com/cuda/nvblas

23

SPARSE MATRIX LIBRARIES

CUSPARSE

Collection of sparse matrix building blocks

Supports multiple matrix formats

https://developer.nvidia.com/cuSPARSE

CUSOLVER

Collection of sparse and dense solvers

Similar to LAPACK

https://developer.nvidia.com/cusolver

AmgX

Algebraic Multi-Grid Solver

Flexible configuration

Krylov methods

Parallel smoothers

MPI support

https://developer.nvidia.com/amgx

https://developer.nvidia.com/cuSPARSE
https://developer.nvidia.com/cuSPARSE
https://developer.nvidia.com/cusolver
https://developer.nvidia.com/cusolver
https://developer.nvidia.com/amgx

24

THRUST

C++ template library for CUDA

Mimics Standard Template Library (STL)

https://developer.nvidia.com/thrust

https://developer.nvidia.com/thrust
https://developer.nvidia.com/thrust

25

THRUST EXAMPLE: SAXPY

int N = 1<<20;

std::vector<float> x(N), y(N);

...

// Perform SAXPY on 1M elements

std::transform(x.begin(), x.end(),

 y.begin(), y.end(),

 2.0f * _1 + _2);

int N = 1<<20;

thrust::host_vector<float> x(N), y(N);

...

thrust::device_vector<float> d_x = x;

thrust::device_vector<float> d_y = y;

// Perform SAXPY on 1M elements

thrust::transform(d_x.begin(), d_x.end(),

 d_y.begin(), d_y.begin(),

 2.0f * _1 + _2);

STL C++ Code Parallel C++ Code

26

CUB

Library of SIMT collective primitives for block-wide and warp-wide
kernel programming

Cooperative sort, prefix sum, reduction, histogram, etc.

http://nvlabs.github.io/cub

http://nvlabs.github.io/cub
http://nvlabs.github.io/cub

27

3 WAYS TO ACCELERATE APPLICATIONS

Applications

Libraries

Easy to use
Most Performance

Programming
Languages

Most Performance
Most Flexibility

Easy to use
Portable code

Compiler
Directives

28

OPENACC DIRECTIVES SYNTAX

C/C++
 #pragma acc directive [clause [,] clause] …]
 ...structured code block

Fortran
 !$acc directive [clause [,] clause] …]
 ...structured code block
 !$acc end directive

29

OPENACC EXAMPLE: SAXPY

subroutine saxpy(n, a, x, y)
 real :: x(n), y(n), a
 integer :: n, i

 !$acc parallel loop
 do i=1,n
 y(i) = a*x(i)+y(i)
 enddo
 !$acc end parallel loop
end subroutine saxpy

...
! Perform SAXPY on 1M elements
call saxpy(2**20, 2.0, x, y)
...

void saxpy(int n,
 float a,
 float *x,
 float *restrict y)
{
#pragma acc parallel loop
 for (int i = 0; i < n; ++i)
 y[i] = a*x[i] + y[i];
}

...
// Perform SAXPY on 1M elements
saxpy(1<<20, 2.0, x, y);
...

SAXPY in C SAXPY in Fortran

30

3 WAYS TO ACCELERATE APPLICATIONS

Applications

Libraries

Easy to use
Most Performance

Programming
Languages

Most Performance
Most Flexibility

Easy to use
Portable code

Compiler
Directives

31

GPU PROGRAMMING LANGUAGES

CUDA Fortran Fortran

CUDA C C

CUDA C++ C++

PyCUDA, Copperhead Python

Alea.cuBase F#

MATLAB, Mathematica, LabVIEW Numerical analytics

32

CUDA EXAMPLE: SAXPY

void saxpy_serial(int n,

 float a,

 float *x,

 float *y)

{

 for (int i = 0; i < n; ++i)

 y[i] = a*x[i] + y[i];

}

// Perform SAXPY on 1M elements

saxpy_serial(4096*256, 2.0, x, y);

Serial C Code

__global__

void saxpy_parallel(int n,

 float a,

 float *x,

 float *y)

{

 int i = blockIdx.x*blockDim.x +

 threadIdx.x;

 if (i < n) y[i] = a*x[i] + y[i];

}

// Perform SAXPY on 1M elements

saxpy_parallel<<<4096,256>>>(n,2.0,x,y);

Parallel CUDA Code

33

CUDA MEMORY MANAGEMENT

Unified Memory

http://devblogs.nvidia.com/parallelforall/unified-memory-in-cuda-6/

void sortfile(FILE *fp, int N) {
 char *data, *d_data;
 data = (char*) malloc(N);
 cudaMalloc (&d_data, N);

 fread(data, 1, N, fp);

 cudaMemcpy(d_data,data,N,H2D);
 qsort<<<...>>>(d_data,N,1,compare);
 cudaMemcpy(data,d_data,N,D2H);

 use_data(data);

 cudaFree(d_data);
 free(data);
}

Without Unified Memory

void sortfile(FILE *fp, int N) {
 char *data;
 cudaMallocManaged(&data, N);

 fread(data, 1, N, fp);

 qsort<<<...>>>(data,N,1,compare);
 cudaDeviceSynchronize();

 use_data(data);

 cudaFree(data);

}

http://devblogs.nvidia.com/parallelforall/unified-memory-in-cuda-6/
http://devblogs.nvidia.com/parallelforall/unified-memory-in-cuda-6/
http://devblogs.nvidia.com/parallelforall/unified-memory-in-cuda-6/
http://devblogs.nvidia.com/parallelforall/unified-memory-in-cuda-6/
http://devblogs.nvidia.com/parallelforall/unified-memory-in-cuda-6/
http://devblogs.nvidia.com/parallelforall/unified-memory-in-cuda-6/
http://devblogs.nvidia.com/parallelforall/unified-memory-in-cuda-6/
http://devblogs.nvidia.com/parallelforall/unified-memory-in-cuda-6/
http://devblogs.nvidia.com/parallelforall/unified-memory-in-cuda-6/
http://devblogs.nvidia.com/parallelforall/unified-memory-in-cuda-6/

34

CUDA MEMORY MANAGEMENT

cudaMalloc & cudaMemcpy

Explicitly track host and device
memory

Explicitly relocate data (sync or
async)

Expresses data locality (most
performance)

cudaMallocManaged

Single pointer for host & device
memory

Automatic relocation at launch
and sync

Easier porting of application
(simplicity)

 ADVICE: develop with cudaMallocManaged, optimize with cudaMalloc if necessary

35

The Future of GPUs

36

NEW TECHNOLOGIES

NVLINK

GPU high speed interconnect

5x-12x PCI-E Gen3 bandwidth

Planned support for POWER® CPUs

HBM (Stacked Memory)

4x higher bandwidth (~1 TB/s)

3x larger capacity

4x more energy efficient per bit

37

IMPROVING UNIFIED MEMORY

void sortfile(FILE *fp, int N) {
 char *data, *d_data;
 cudaMallocManaged(&data, N);

 fread(data, 1, N, fp);

 qsort<<<...>>>(d_data,N,1,compare);
 cudaDeviceSynchronize();

 use_data(data);

 cudaFree(data);
}

void sortfile(FILE *fp, int N) {
 char *data;
 data = (char*) malloc(N);

 fread(data, 1, N, fp);

 qsort<<<...>>>(data,N,1,compare);
 cudaDeviceSynchronize();

 use_data(data);

 free(data);
}

38

SUMMIT

Vendor: IBM (Prime) / NVIDIA™ / Mellanox Technologies®

At least 5X Titan’s Application Performance

Approximately 3400 nodes, each with:

IBM POWER9 CPUs + NVIDIA Volta GPUs

CPUs and GPUs connected with high speed NVLink

Large coherent memory: over 512 GB (HBM + DDR4)

Over 40 TF peak performance

Dual-rail Mellanox® EDR-IB full, non-blocking fat-tree interconnect

2017 OLCF Leadership System

39

SUMMIT
How does Summit compare to Titan

40

SUMMIT

Fewer but much more powerful nodes

1/6th the number of nodes, but ~25x more powerful

Must exploit more node-level parallelism

Multiple CPUs and GPU to keep busy

Likely requires OpenMP or OpenACC programming model

Very large memory

Summit has ~15x more memory per node than Titan

Interconnect is only ~3x the bandwidth of Titan

Need to exploit data locality within nodes to minimize message passing traffic

Titan & Summit Application Differences

41

RESOURCES

CUDA resource center:

http://docs.nvidia.com/cuda

GTC on-demand and webinars:

http://on-demand-gtc.gputechconf.com

http://www.gputechconf.com/gtc-webinars

Parallel Forall Blog:

http://devblogs.nvidia.com/parallelforall

Self-paced labs:

http://nvlabs.qwiklab.com

Learn more about GPUs

http://docs.nvidia.com/cuda
http://docs.nvidia.com/cuda
http://docs.nvidia.com/cuda
http://on-demand-gtc.gputechconf.com/
http://on-demand-gtc.gputechconf.com/
http://on-demand-gtc.gputechconf.com/
http://on-demand-gtc.gputechconf.com/
http://on-demand-gtc.gputechconf.com/
http://on-demand-gtc.gputechconf.com/
http://on-demand-gtc.gputechconf.com/
http://www.gputechconf.com/gtc-webinars
http://www.gputechconf.com/gtc-webinars
http://www.gputechconf.com/gtc-webinars
http://www.gputechconf.com/gtc-webinars
http://devblogs.nvidia.com/parallelforall
http://devblogs.nvidia.com/parallelforall
http://devblogs.nvidia.com/parallelforall
http://nvlabs.qwiklab.com/

